当前位置:首页 > 《数学广角》教案

《数学广角》教案

jiazacn[注册用户]

更新时间:5天前

《数学广角》教案

《数学广角》教案(精选19篇)

  作为一名教职工,就不得不需要编写教案,教案有助于学生理解并掌握系统的知识。那么写教案需要注意哪些问题呢?下面是小编精心整理的《数学广角》教案,希望对大家有所帮助。

  《数学广角》教案 1

  设计说明

  1.加强动手操作训练,促进学生的思维。

  有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式。本设计积极引导学生理解天平平衡的原理,加强对用天平称物和画图的动手操作训练。使学生经历称物、分轻重的过程,了解和思考称物的不同情况,逐步把思维条理化、逻辑化,并想办法用图示表示出来,从而促进学生逻辑思维的发展。

  2.自主探索,体会优化思想。

  本设计给予学生充分的自主探索的空间,通过试验、汇报不同的解决问题的方法,发现如何分份是优化“找次品”方法的关键,从而总结出最佳的分份方法和最佳的图示方法,渗透优化思想。

  课前准备

  教师准备 PPT课件 天平 药瓶

  学生准备 天平

  教学过程

  情境导入,激发兴趣

  1.你们每天上学通常要走哪条路?为什么要选择这条路?

  (生自主回答)

  2.你们真聪明,在平时做事的时候就能选择最简便的方法。在数学学习中,解决问题的方法是多种多样的`,但通常都有一种最有效、最简便的方法,我们把它叫最优化的方法。这节课就让我们带着优化的思想走进课堂。(师出示2瓶钙片)

  师:老师这里有2瓶钙片,其中有1瓶少了3片,你们能不能想办法帮我把它找出来呢?(生回答想法)

  师:老师准备了一架天平。如果在天平左右两边的托盘里放上质量相同的物品,天平就会平衡;如果一边重一边轻,那重的一边就会沉下去,轻的一边就会翘起来。今天我们就借助天平来完成本节课的学习内容。

  设计意图:引导学生根据次品的特点发现用天平“称”的方法,知道并不需要称出每个物品的具体质量,而只要根据天平的平衡情况对托盘两端的物品进行判断就可以了。

  实践操作,自主探究

  1.提出探究要求。

  师:同学们很容易就从2瓶钙片中把这瓶次品找到了,如果是3瓶钙片,你还能从中找到这瓶次品吗?同桌可以用学具摆一摆,试一试。

  2.动手操作,汇报方法。

  学生动手试验后汇报。(先在天平的两端分别放上1瓶钙片,如果天平平衡,剩下的一瓶就是次品;如果天平不平衡,轻的那端就一定是次品了)

  3.总结归纳记录的方法。

  组织学生把用天平称的过程用图表记录下来。

  合作交流,研究探讨

  师:同学们真聪明,这么容易就从3瓶钙片中找到了次品,其实你们已经用自己的聪明才智解决了教材中例1所提出的问题。那么,例2又向我们提出了哪些问题呢?

  理解题意,动手操作。

  (1)先让学生读题,说说“至少”的含义。

  (2)小组分工合作:用学具摆一摆,并尝试用图示和表格表示摆的过程,完成下表。

  (合作要求:2名同学摆学具,1名同学用图示法作记录,1名同学填表)

  《数学广角》教案 2

  设计说明

  《数学课程标准》中指出:“推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。”逻辑推理是进一步学习数学的基础,为打好这个基础,本设计注重通过游戏活动让学生理解逻辑推理的含义,体验推理的过程。同时帮助学生建立多种推理模式,并学会用语言表述推理过程。

  1.通过游戏活动激发兴趣,经历推理过程,理解推理含义。

  低年级的学生对游戏永远充满了兴趣。首先出示双胞胎的照片,在没有任何提示的情况下让学生进行猜想,进而引导学生了解要想猜对必须要有提示,体验所给的提示不同,所猜的结果也不一样,调动学生猜的兴趣和积极性。然后通过猜书活动、填数活动,引导学生根据已知条件进行判断并得出结论,使学生经历推理过程,并初步理解逻辑推理的含义,即推理就是我们根据已知条件获得一个结论的方法。

  2.帮助学生建立多种推理模式,并学会用语言表达推理过程。

  在小学阶段主要是发展学生合情推理的能力。合情推理是根据已有的知识和经验,在某种情境和过程中推出可能性结论的推理。由于学生在推理的过程中基本都是借助语言表述,因此本设计注重引导他们借助表格来推理,也可以借助连线来推理,简化了推理过程,感受思考问题方式的多样性和简洁性。同时培养学生在推理的过程中做到言之有理、落笔有据。让学生根据所给的提示,清晰地表述自己在推理过程中的想法。语言是思维的外壳,只有想得清,才能说得明。最后在教学中给学生留下一部分空间让其交流、表达,培养了学生的表达能力。

  课前准备

  教师准备 PPT课件

  学生准备

  表格

  教学过程

  ⊙创设情境,引入新课

  1.导语:新学期开始,班里来了一对双胞胎兄弟,哥哥叫大壮,弟弟叫小壮(课件出示),你能分清谁是哥哥,谁是弟弟吗?为什么?

  (学生自由讨论,汇报)

  生:我分不清,因为他们长得一模一样。

  2.过渡:老师帮你们一下。(课件演示)其中的一个说:“我不是哥哥。”现在你们能分清谁是哥哥,谁是弟弟吗? 说明理由,为什么作出这样的判断。

  (学生在小组内交流,然后全班汇报)

  3.揭示课题:刚才同学们根据双胞胎兄弟中一人的话,判断出了谁是哥哥,谁是弟弟,这种推理方法叫排除法。你们能根据老师给出的提示得出正确的结论,这样的思维过程叫推理。其实这样的推理在我们的生活中运用得非常广泛,生活中有许多的`事情需要我们根据已知条件来进行推理,今天我们就来学习简单的推理。(板书课题)

  设计意图:从生活中常见的实际问题引入,判断哪个人是哥哥,哪个人是弟弟,学生的积极性被调动起来,同时也让学生感受到数学与生活的密切联系。

  自主学习,探究新知

  一、教学教材109页例1。

  1.课件出示教材109页例1,整理信息。

  (1)教师引导学生仔细观察图片,把整理出的数学信息进行交流。

  (2)学生反馈:有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。小红说:“我拿的是语文书。” 小丽说:“我拿的不是数学书。” 问题是小刚拿的是什么书,小丽拿的是什么书。

  (3)教师提示:刚才的这段话里包含着一些信息,我们需要把这几句话整理一下才能作出准确的判断,这就是整理信息。

  2.探究方法。

  (1)教师组织学生先独立思考,把解决这个问题的过程用自己喜欢的方式记录下来,然后小组交流。

  (2)指名汇报。

  预设

  生1:可以把人名和书名写成两行,根据条件连线。小红拿的是语文书,就直接连线,剩下的小丽和小刚就只能连数学书和品德与生活书。小丽说她拿的不是数学书,那小刚拿的就是数学书,把小刚和数学书连上。最后把小丽和品德与生活书连上。

  生2:通过分析,我知道小红拿的是语文书,那小丽和小刚拿的就是数学书和品德与生活书。小丽说她没拿数学书,那就是说小丽拿的是品德与生活书,则小刚拿的是数学书。

  3.明确思考关键。

  (1)质疑:为什么几位同学叙述自己的思考过程时都从“小红拿的是语文书”开始呢?

  (2)学生小组交流,汇报。明确推理应抓住关键信息,层层分析,最终推导出结论。

  (3)师生共同总结:推理时,一般先找到最关键的条件,根据这个条件往往能得到一个结论,这个结论可以帮助我们进行下一步推理。实际推理时,方法有很多,边读边思考是推理的一种方法。连线法和列表法能让我们的推理过程更简洁、直观,我们可以根据需要选择合适的推理方法。

  二、教学教材110页例2。

  1.课件出示教材110页例2。

  (1)读题思考,然后说说你知道了什么信息。

  (2)提示:你们首先能确定哪行哪列的数?

  (先看哪一个空格所在的行和列出现了三个不同的数,这样就能确定这个空格应填的数)

  A是几?你是怎么想的?B是几?你是怎么想的?接着该怎么填?

  2.探究方法。

  (1)学生在小组内讨论、交流,说一说自己的想法。

  (2)指名汇报。

  (3)小组派代表上台讲解。

  《数学广角》教案 3

  一、教材分析:

  烙饼问题是人教版四年级上册《数学广角》中的例1.(p112),主要让学生经历有目的、有计划、有合作的实践活动,完成如何操作最节省时间烙饼的问题,让学生在解决问题中体会合理安排,优化思想以及统筹的方法,与此同时,让学生结合烙饼情境,体验发现和提出问题,分析和解决问题的过程。让学生达到脑动、手动的效果,从而达到新课程标准下的“四基”要求。本节内容的安排符合学生的认知特点,数学来源于生活,服务于生活,为学生学习知识与实际生活相结合提供了良好的契机。

  二、教学目标:

  1.知识与技能

  (1)使学生通过生活中的实例初步体会统筹思想,理解合理安排的`方法,在解决实际问题中的应用。

  (2)通过解决问题培养学生的思维能力。 2.过程与方法

  使学生经历合作、自主、探究的过程,认识到解决问题的多样性,形成解决问题最优方案的意识。

  3.情感态度与价值观

  使学生感悟到数学来源于生活并服务于生活,初步培养学生的应用意识,体验成功的喜悦,从而提高学习数学的兴趣。

  三、教学重难点:

  教学重点:使学生形成寻找解决问题最优化的意识。 教学难点:探究解决问题的最优方案。

  四、教学课时:

  一课时

  五、教学用具:

  3张圆片、多媒体课件 六、教学过程:

  1.课前交流,营造学习气氛。

  师:同学们,看到你们这么精神,老师非常地高兴,我想在你们家里一定有这样一个人每天把你们照顾的无微不至,天冷了给你们加棉衣,无论在工作中有多么忙碌都会为你们做好一日三餐,她就是你们的(妈妈)。

  2.情景导入,探索新知。

  师:①小红也有这样一个好妈妈,瞧 ,她的妈妈正在给她做早餐,做的什么呢?(烙饼),(出示课件)。 从图中,我们知道她的妈妈遇到什么问题了?妈妈在想如何才能尽快把饼烙出来?我们一起用这节课学习的知识帮她想想办法。板书课题——烙饼问题。

  设计意图:通过感知母爱,激发学生的学习兴趣,调动学生已有的生活经验,是学生处于主动思考问题的状态。

  ②聪明的小朋友们再仔细观察一下图片,你们知道烙饼的要求有哪些么?(随着学生的回答出示课件)。

  1.一个平底锅只能烙2张饼

  2.两面都要烙,每面需要3分钟。

  ③教师提问:

  (1)妈妈烙一张饼最少需要几分钟?(6分)

  (2)如果妈妈要烙两张饼最少需要几分钟?怎么烙?(学生演示)。

  小结:一个平底锅最多能烙2张饼,可以先同时烙饼的正面,用了3分钟,在同时烙饼的反面用了3分钟,这样2张饼需要6分钟。

  (3)妈妈怕小红不够吃,想烙3张饼,但是锅里每次只能放两张,那怎么才能用最短时间烙出三张饼呢?

  ④学生合作交流,探究烙3张饼的方法。

  学生用圆片代替饼演示一下,组内成员计算用了几分钟,是怎样烙的?(圆片的两面分别写着正面和反面)教师巡视指导。 ⑤学生展示烙饼法。

  小组派代表上前边说边演示,记录时间,教师随着学生的演示展示课件3种烙法,让大家来比较。哪一种用时最短?

  得出结论:9分钟是烙3张饼最短的时间,我们给这种方法起个名字——叫做快速烙饼法。(教师板书)

  小结:教师出示课件,展示快速烙饼法的过程,让学生用快速烙饼法给组内成员演示。 设计意图:烙3张饼是解决烙饼问题的关键,学生通过合作、交流、探究烙饼过程,再进行比较,可以帮助学生理清思路,又为后面的学习打下基础。

  ⑥ 拓展延伸:烙3张饼所需时间是9分钟,想一想那4张饼呢,怎样烙时间最短?组内同学交流一下,试一试,看看哪个小组的方法最好。 学生展示烙4张饼的快速烙法。(2张2张的烙)用时12分钟,并完善表格。 提问:如果是烙5张饼呢?最少需要几分钟?组内交流,完善表格。

  教师小结后,如果烙6张饼呢?7张呢?8张呢?10张呢?最少需要几分钟? 设计意图:通过以上活动可以使学生找到最优方法,使优化思想在解决实际问题中得到应用。

  ⑦探索规律。

  让学生仔细观察表格,小组讨论交流,说一说你的发现。

  (根据情况适当提示:①烙饼的张数与所需时间。②烙饼的方法有几种。) 出示课件,得出烙饼方法的结论。

  师:哪位同学能快速的说出烙11张饼最少用多长时间,15张饼呢?

  设计意图:通过拓展性的提问,对前面的知识进行巩固,为学生的思维发展提供空间。

  3.实践应用 4.总结新知

  畅谈收获:生活中还存在很多类似烙饼的问题,等你们去发现,去解决,你们成功的帮助了小红的妈妈,为了表示感谢,妈妈送给我们一首歌,我们来听一下。

  《数学广角》教案 4

  【教学目标】

  知识技能

  1.重视“数”“形”之间的联系,找到解题规律。

  2.引导学生探究算式左边的加数与大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数的关系,发现“数”“形”之间的联系,找到其中的规律,使学生在体验用形表示数的直观性的同时,学会应用规律解决问题。 过程与方法:

  1.借助“数”“形”之间的关系,解决相关问题。

  2.使学生在初步了解、运用“数形结合”思想方法的同时,体验到数学的极限思想。

  情感态度价值观:

  在巩固练习时,充分利用教材习题,引导学生在解决问题时能举一反三地运用所学,使学生的解题能力得到培养。

  【教学重难点】

  重点:感受数与形可以互相转化,树立数与形相结合是数学解题思想方法。 难点:体验到数学的极限思想。

  【教具准备】

  教具:正方形块 ,课件。

  学具:完全相同的小正方形纸卡若干

  【教学过程】

  一、激趣导入

  师:老师听说咱们班的同学很爱听故事,今天老师也带来了一个,这个故事叫 《形帮数》想听吗?

  生:想.......

  师:(出示第一张形与数的课件,背景音乐响起)在数学王国里住着数和形两个大家族,他们有时争吵,但更多的是互相帮助.......(故事讲完)同学们,你们知道形是怎么帮助数解决问题的吗?这节课让我们一起到人教版数学六年级上册第八单元 数学广角—数与形 中寻找它们解决问题的过程及方法。(板书课题)

  二、探究新知

  1.教学例1。

  (1)出示例题。

  2 2 1=(1)

  1+3=(2) 1+3+7=(3) 2

  (以故事的方式讲解)让我们再次回到故事中,形大步走到数的面前,挺着肚子 1 2

  说:“考考你,你算算我有多大?”数上下打量了一下形:“哼!小菜一碟,你是正方形,边长1厘米,面积等于边长乘以边长,就是1×1=(1) ;看到数能快速地说出来,形说:“别高兴的太早,后面还有呢!”接着它把和它长得一样大小的三个兄弟叫到它身边,和它站在一起,一个挨着一个,整齐地排成两排,(让学生拿出正方形按照形说的'摆出来)形说:“那你现在能算出我们有多大吗?”数说:“你的面积是1,你的三个兄弟都是和你一样大小的正方形,它们每个的面积也是1,三个的面积就是3,你们四兄弟的面积是1+3=4,4是2的平方。”

  师:同学们,数算出来的结果对吗?你们也用其他的方法来算一算,帮数检查一下,看看结果是否正确?动手做在草稿纸上,做好的同学请举手。(引导学生用求大正方形的面积的方法计算:它们排成两排还是一个大正方形,不管是行还是列都由两个小正方形组成,边长也是两个小正方形的边长相加,所以大正方形的2 面积等于2×2=4=(2) )等学生完成之后,个别提问方法,让学生知道有两种方法来做。故事内容:“待数算完之后,形又把和它们一样大小的五个正方形叫到它们的身边,一个紧挨一个排成一个大正方形,你们知道形是怎样排列的吗?请你试着排列出来。”请学生上来排列,其他学生小组合作,教师巡视,指导学生列算式。检查结果,讲解过程。

  (2)小组合作:动手排列第四个,第五个图形并写出相应的算式,总结发现。 ①排列图形、观察、讨论。

  仔细观察,看一看上面的图形和算式左边有什么关系?

  ②汇报发现。

  发现一:算式左边的加数的个数与对应的大正方形中每行(或每列)的小正方形的个数相同;

  发现二:算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和。

  发现三:算式左边的加数和正好等于大正方形中每行(或每列)的小正方形个数的平方。

  [算式左边的加数是大正方形左下角的小正方形和其他“┐”形图形所包含的小正方形个数之和,正好是每行(或每列)小正方形个数的平方]

  发现四:从1开始的连续奇数的和正好是这几个奇数的个数的平方。

  三、应用知识。

  1. 你能利用在《形帮数》的故事中找出的规律,直接写一写吗?(可借助学具摆一摆) 2 ①1+3+5+7=( ) 2 (1+3+5+7=4 ) 2 ②1+3+5+7+9+11+13=( ) 2 (1+3+5+7+9+11+13=7 )

  ③____________________=92 (1+3+5+7+9+11+13+15+17=9 2 )

  2. 请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+5+3+1 =() 5 2

  3.请根据《形帮数》的故事中(例1)的结论算一算。

  1+3+5+7+9+11+13+11+9+7+5+3+1=( )85

  《数学广角》教案 5

  教学目标:

  1、通过摆一摆、玩一玩、画一画等实践活动,了解有关两两组合的知识。

  2、培养学生初步的观察、分析能力和有序的、全面思考问题意识。

  3、培养学生大胆猜想、积极思维的学习品质。

  4、通过学习学生能应用排列组合的知识解决生活中的实际问题。

  教学重点:

  经历探索简单事物两两组合规律的过程

  教学难点:

  能用不同的方法准确地计算出组合数。

  教学用具:

  课件、卡片、铅笔、直尺等。

  教学过程:

  一、创设情境,激趣导入:

  师:小朋友们喜欢什么样的球类运动呢?

  (让学生各抒已见。)当有人说到足球时。老师马上引到学校冬季运动会,我们三年级3个班的比赛情况,结果我们班得了第一。那我们班比赛了几场?学生回答两场。三个班比赛,每两个班比赛一场,那一共要比赛多少场呢?四人小组合作完成。然后汇报,并说理由。

  二、引导参与:4人小组合作完成。然后汇报,并说理由。

  三、共同探究:

  师:20xx年世界杯足球C组比赛有几国家?是哪几个国家?让学生发表意见。他们说不出,老师再告诉他们。

  师:如果这四个队每两个队踢一场球,一共要踢多少场?(课件演示主题图)

  1、让学生大胆说一说、猜一猜。

  2、四人小组用学具卡片摆一摆、讨论讨论。

  3、学生汇报。

  4、汇报时可让学生利用学具卡片在黑板上演示他们求组合数的方法。

  5、一小组演示。

  6、其他同学认真观看。

  8、然后在相互探讨、补充。

  9、力求能准确算出比赛场数。

  10、方法允许多样。每种方法都放手让学生相互交流、学习。老师适当引导。

  11、师生共同。

  A、用画“正”字数出要踢多少场。

  B、把巴西、土耳其、中国、哥斯达黎加四个国家摆成正方形用连线的方法求出场数。

  C、把巴西、土耳其、中国、哥斯达黎加四个国家摆在一直线上在用连线的方法求出场数。

  13、用课件将上面第二、第三种方法直观演示。

  14、让学生把这些抽象的知识直观化、具体化。

  15、老师总结。

  刚才同学们有的用了把所有的情况逐一罗列出来,有的同学是用图示法求出两两组合数的,用哪一种方法求都可以,只要这种方法是你喜欢的'。

  课堂练习:

  比赛结束了。运动员相互握手告别。问题是:四个人每两人握手一共要握几次手呢?

  (1)进行礼仪教育。

  (2)四人小组进行实践。

  (3)请1-2个小组代表上台演示。

  作业设计:

  提问:如果是5个运动员每两人握一手,一共要握几次手呢?

  我的问答:

  课堂是以学生为主体的, 所以学生的主体地位在任何时候都要放在首位,但这一点也是许多教师都犯的一个通病,把课堂看做自己表演的舞台,给学生留的空间很少,这就我自己认为是错误的,你说呢!

  《数学广角》教案 6

  教学目标:

  1、使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

  2、能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

  3、进一步体会到数学与日常生活密切相关。

  4、使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

  5、体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

  教学重点:

  分配问题。抽取问题。

  教学难点:

  正确说明分配的结果。理解抽取问题的'基本原理。

  教学时间:

  2课时

  第1课时

  教学内容:分配

  知识与技能:使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。

  过程与方法:能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。

  情感态度与价值观:进一步体会到数学与日常生活密切相关。

  教学重点:分配问题。

  教学难点:正确说明分配的结果。

  教学过程:

  一、学例1

  1、活动。

  把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?

  学生思考各种放法。

  与同学交流思维的过程和结果。

  汇报交流情况。

  学生口答说明,教师利用实物木棒:

  第一种放法: 第二种放法:

  第三种放法: 第四种放法:

  2、问题。

  不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?

  经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。

  3、做一做

  7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?

  说出想法。

  如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。

  尝试分析有几种情况。

  说一说你有什么体会。

  学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。

  二、学例2

  1、本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?

  摆一摆,有几种放法。

  不难得出,总有一个抽屉至少放进3本。

  2、说你的思维过程。

  果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。

  3一共有7本书会怎样呢?9本呢?

  学生独立思考,寻找结果。

  与同学交流思维过程和结果。汇报结果,全班交流。

  4、能用算式表示以上过程吗?你有什么发现?

  5÷2=2……1 (至少放3本)

  7÷2=3……1 (至少放4本)

  9÷2=4……1 (至少放5本)

  说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。

  5、做一做

  8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?

  想:每个鸽舍飞进2只鸽子,共飞进6只鸽子。剩下2只鸽子还要飞进其中的1个或2个鸽舍,所以,至少有3只鸽子要飞进同一个鸽舍里。

  三、巩固练习

  完成课文练习十二第2、4题。

  四、布置作业

  完成《家庭作业》第20练习。

  第2课时

  教学内容:抽取游戏

  教学目标:

  知识与技能:使学生能理解抽取问题中的一些基本原理,并能解决有关简单的问题。

  情感态度与价值观:体会数学与日常生活的联系,了解数学的价值,增强应用数学的意识。

  教学重点:抽取问题。

  教学难点:理解抽取问题的基本原理。

  教学过程:

  一、教学例3

  盒子里有同样大小的红球和蓝球各4个。要想摸出的球一定有2个同色的,最少要摸出几个球?

  1、猜一猜。

  让学生想一想,猜一猜至少要摸出几个球。

  2、实验活动。

  一次摸出2个球,有几种情况?

  结果:有可能摸出2个同色的球。

  一次摸3个球,有几种情况?

  结果:一定能摸出2个同色的球。

  3、发现规律。

  启发:摸出球的个数与颜色种数有什么关系?

  学生不难发现:只要摸出的球比它们的颜色种数多1,就能保证有两个球同色。

  二、做一做

  1、第1题。

  独立思考,判断正误。

  同学交流,说明理由。

  2、第2题。

  说一说至少取几个,你怎么知道呢?

  如果取4个,能保证取到两个颜色相同的球吗?为什么?

  三、巩固练习

  完成课文练习十二第1、3题。

  四、布置作业

  完成《家庭作业》第21练习。

  《数学广角》教案 7

  一、教学设计学科名称:

  数学广角(小学数学二年级)

  二、所在班级情况,学生特点分析:

  本班现有学生人数30人,大多数学生学习态度端正, 学习积极性高,课堂气氛活跃,能够踊跃发言,但还存在一定问题,就是班级学生发展不平衡,有些基础太差跟不上步伐,今后还得加强对学困生的辅导。

  三、教学内容分析:

  人教版小学二年级数学第八单元《数学广角》。使学生通过观察、操作、 实验等活动,找出简单事物的排列组合规律。培养学生初步的观察、分析和推理能力以及有顺序地、全面地思考问题的意识。 使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。

  四、教学目标:

  1、初步了解排列组合的基本原理。

  2、获得初步的数学活动经验,能够运用所学的知识与方法解决简单的问题。

  3、感受数学在日常生活中的运用。

  五、教学难点分析:

  引导学生经历简单的操作过程,初步理解简单事物排列与组合。

  六、教学课时:

  三课时

  七、教学过程:

  (一)、激趣、导入

  1、在上课之前,老师想来考考小朋友们,大家愿意吗?谁能用1、2、3可以组成多少个不同的两位数呢?

  生:12、21、31、23……

  师:太棒了,能说出这么多的2位数呀。

  2、揭题:小朋友们,让我们一起去“数学广角乐园”玩一玩吧!(出示课题:数学广角)

  (二)、动手操作,发现规律

  1、教学例1:

  (1)用数字1、2能摆成几个两位数?

  .①自己动手摆一摆,看一看谁最爱动脑筋,谁的小手最巧。

  ②独立动手摆,然后在班内说一说自己用这两张卡片摆了那些数。展示大家看。

  ③教师板书:12、21

  (2)用1、2、3能排成几个两位数?

  小组合作摆一摆卡片:1、2、3.引导学生动脑,找规律去摆,我们比一比谁摆的数多而不重复。

  3、小组汇报。师生总结。

  (三)、小组合作,巩固发展

  1、抽奖游戏。

  同学们,你们真是太聪明了,来我们一起做个做个抽奖游戏吧,大家想参加吗?每个小朋友都有中奖的机会哦。

  ①、教师出示4张卡片:这里有四个号码:7、5、2、8。

  ②、什么样的号码能中奖呢?我给你们透露点信息:中奖号码就是从这4个数中选出的`两个

  数组成的两位数。猜猜,什么号码可能中奖?

  ③、写好了吗?大家推举一个人来摸奖吧。学生先摸出一张卡片。中奖号码的最前面一位数出

  来了,是2,那中奖号码可能是25、27、28。再摸一张卡片。中奖号码是?

  ④、你中奖了吗?把你写出的这个数圈出来。同桌互相看看。

  ⑤出示所有结果:你刚才一共写出了多少个两位数?用2、5、7、8能组成的两位数究竟有

  多少个呢?咱们用刚才先固定最前面一位数的办法把这些数排出来吧!老师写你们说好吗?

  2、完成99页做一做第1题;握手

  3、完成99页做一做第2题:买作业本。

  (四)、课堂小结

  今天,我们在数学广角里,学习了简单的排列组合方面的知识,大家发现了没有,其实在我

  们身边生活中处处有数学,只要我们认真观察,积极动脑,你一定会发现很多有趣的数学现象哦!

  八、课堂练习:

  让学生能个排列123、456等数字组合。

  九、作业安排:

  教科书99页练习二十三第一题.第二题。

  十、 附录

  (教学资料及资源):教师教学用书.教案书。

  十一、自我问答:

  本节课我运用情境导入的方法,首先提起孩子们的学习兴趣,让他们参与到活动中来,培养他们的动手操作能力,以及观察.分析.推理能力。在愉快的学习气氛中

  体会排列组合在生活中的用处及乐趣。

  《数学广角》教案 8

  教学目标:

  知识与技能:1、使学生初步体会运筹思想在解决实际问题中的应用。2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。

  过程与方法:使学生理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。

  情感、态度和价值观:使学生感受到数学在日常生活中的广泛应用,尝试用数学的方法解决生活中的简单问题。

  重点:体会优化的思想

  难点:寻找解决问题最优方案,提高学生解决问题的能力。

  教具:图片

  教学过程:

  一、情境导入:

  1、同学们想一想,生活中有哪些事情可以通过合理安排来提高效率?

  2、这节课我们继续来学习数学广角。板书课题:数学广角

  二、探究新知

  教学例3

  1)出示情境图片:

  码头上现在同时有3艘货船需要卸货,但是只能一条一条地卸货,并且每艘船卸货所需的时间各不相同,那么按照怎样的顺序卸货能使3艘货船等候的总时间最少呢?

  2)观察图,说说可以得到哪些信息?

  问:要使三艘货船的.等候时间的总和最少,应该按怎样的顺序卸货?

  学生讨论

  3)可以有哪些卸货的顺序?每种方案总的等候时间是多少?

  列出表格,问:从表中你有什么发现吗?

  引导学生思考汇报

  4)找出最优方案

  三、巩固新知:

  1、书后做一做

  小名、小亮、小叶同时来到学校医务室。要使三人的等候时间的总和最少,应该怎样安排他们的就诊顺序?

  2、有210人选举大队长,有三位候选人甲、乙、丙,每人只能选之中1人,不能弃权。前190张票中甲得75张,乙得65张,丙得50张,规定谁的票最多谁当选。若甲要当选,最少还需要多少张票?

  四、小结:

  这节课你有什么收获?

  五、作业:

  补充练习

  《数学广角》教案 9

  教学目标:

  1、通过创设一系列的情境串,让学生经历简单推理的过程,初步获得一些简单推理的经验。

  2、让学生在有趣的游戏中感受推理的趣味性,培养学生初步的分析推理能力。

  3、使学生感受到生活、活动中有“数学”,激发学生热爱数学的浓厚兴趣,逐步养成有序思考、善于类比的良好学习习惯。

  教学重点:培养学生推理能力及有序地全面思考问题的能力;

  教学难点:引导学生将直观思维生成到逻辑思维。使学生能清晰地、有条理的表达推理过程。

  课前谈话:

  师:嗨!同学们我们又见面了,还记得我是谁吗?

  生:陈老师

  师:大家的声音真亲切!能和我打个招呼吗?

  生:陈老师好!

  师:个个都是这么有精神,真棒!大家,喜不喜欢玩游戏呢?

  生:喜欢

  师:好,我们就来玩一个摸耳朵的游戏,这个游戏需要我们认真听,能不能做到?

  生;能

  师:摸一只耳朵

  生摸

  师:你摸的哪只耳朵?你呢?

  生:我摸的左耳朵/我摸的右耳朵

  师:有的摸左耳朵,有的摸右耳朵。好像都对!再来!

  师:摸摸你的左耳,摸摸你的右耳。

  生分别摸对

  师:不错,听的很认真!要加快速度咯!

  摸摸你的右耳,摸摸你的左耳,摸的不是右耳,停!你摸的哪只耳朵?

  生:我摸的'是左耳朵。

  师:为什么不摸右耳朵?

  生:因为你说摸的不是右耳朵,就只能摸左耳朵了。

  师:哎?你怎么不摸左眼睛呀?

  生:因为这是摸耳朵的游戏呀!

  师:对了,这是摸耳朵的游戏。人的耳朵只有几只?

  生:两只。

  师:哦!人只有两只耳朵,摸的不是右耳就是左耳。

  师:这个游戏好玩吗?

  生:好玩!

  师:好玩我们就不玩了,准备上课好吗?(这个游戏和我们今天学习的知识有关,下面我们准备上课了,好吗?)

  教学流程:

  一、情境导入

  1、猜兄弟关系

  师:陈老师给大家带来两个新朋友,想认识吗?

  生:想!

  师:这两位小朋友是谁?

  生:贝贝、乐乐。

  师:贝贝和乐乐是两兄弟,根据这个条件请大家猜猜谁是哥哥,谁是弟弟!

  生1:贝贝是哥哥,乐乐是弟弟。

  师:有可能

  生2:贝贝是弟弟、乐乐是哥哥

  师:也有可能

  生3:乐乐是哥哥,贝贝是弟弟。哥哥比较高,弟弟比较矮。

  师:哥哥一定就比弟弟高吗?

  生4:乐乐是弟弟,贝贝是哥哥。

  师:有的说贝贝是哥哥、乐乐是弟弟,有的说乐乐是哥哥、贝贝是弟弟。现在能确定谁是哥哥,谁是弟弟吗?

  生:能/不能

  师:你们这样争下去,乐乐可着急了!瞧!他说了什么?

  生:乐乐说“我不是哥哥”。

  师:现在还用猜吗?

  生:不用了,我知道了!

  师:你接着说!

  生:乐乐是弟弟,贝贝是哥哥。(师相机出示答案)

  师:你是根据哪些条件确定的?

  生:我是根据乐乐说“我不是哥哥”这个条件确定的!乐乐不是哥哥,就是弟弟。贝贝肯定是哥哥了!

  师:这一个条件就能确定啦?谁来帮他补充!

  生:我根据贝贝、乐乐是两兄弟,乐乐说“我不是哥哥”这两个条件来确定的。

  师:你真是一个会细心观察的学生!谁能根据这两个条件再来说说理由?

  生:因为贝贝和乐乐是两兄弟,所以乐乐不是哥哥就是弟弟。贝贝肯定就是哥哥了。

  师:你说的真完整,还有谁能像他一样再说一次?

  生:因为贝贝和乐乐是两兄弟,所以乐乐不是哥哥就是弟弟,贝贝就肯定是哥哥了。

  师:你也说的很好!请坐!陈老师现在有个问题了,为什么开始大家不能确定谁是哥哥谁是弟弟,现在又都能确定呢?(课件出示两幅图对比)

  生:因为刚开始只有一个条件,所以不能确定,/因为刚开始只说贝贝和乐乐是两兄弟,我们不知道谁是哥哥谁是弟弟,都是乱猜的。

  师:说的很好!大家都能根据条件来判断。板书:条件

  师:刚开始只有一个条件,能确定吗?

  生:不能确定。(师板书不能确定)

  师:说明条件还?(师摇摇头)

  生:条件还不够!(师板书不够)

  师:对了!条件不够,我们不能确定谁是哥哥,谁是弟弟。(微笑)

  师:后来能确定吗?

  生:能确定。(师板书确定)

  师:说明什么?

  生:条件足够了!

  师:很好!开始条件不够不能确定,后来条件足够才能确定。

  师:同学们真聪明!我们在观察的时候一定要根据条件作出判断这个过程就是我们今天要学习的,简单的推理。板书:简单的推理

  二、游戏巩固

  师:贝贝和乐乐在玩一个藏花的游戏,你们想参加吗?

  生:想

  课件出示:贝贝、乐乐分别藏着红花、蓝花

  贝贝说我藏的不是红花

  他们分别藏着什么颜色的花?

  师:从这幅图上你知道了哪些条件?

  指名说出图上的条件,有说错的:谁愿意帮他?

  师:小精灵问我们?

  生:他们分别藏着什么颜色的花?

  生:能!

  师:请你在练习纸上第一题填一填。

  生独立填写后汇报,师相机出示课件

  师:你是怎样确定的?

  生:因为贝贝、乐乐分别藏着红花、蓝花,所以贝贝藏的不是红花就是蓝花,乐乐藏的就肯定是红花。

  或:因为贝贝、乐乐分别藏着红花、蓝花两朵花,所以贝贝藏的不是红花就是蓝花,剩下的红花肯定是乐乐藏着的。

  师:真不错!每个条件都考虑到了!

  生:另外一种

  师:做对的请举手!

  小结:我们刚才推理了哪几朵花?

  生:红花、蓝花

  师:对了,我们判断红花、蓝花两种花,不是红花就是蓝花。(要引导学生一起说)。所以当我们推理两种物体时,不是其中的一种就是?

  生:另外一种

  师:看来,推理两种物体,不是……就是要牢记!(贴)

  师:推理两种物体的小妙招是什么?预备齐!(师指板书)

  生纷纷举手

  三、三人藏花游戏

  1、看图读文提取信息

  师:看来同学们已经学会了简单的推理!现在他们的好朋友欢欢也想来参加,大家欢迎吗?(出示课件)

  生:欢迎!

  师:认真看!从这幅图上你知道了哪些条件?小精灵的问题又是什么呢?

  指名汇报

  (预)生1:我知道了,贝贝、乐乐、欢欢三人分别藏这红花、蓝花、黄花,贝贝说我藏的是红花,欢欢说我藏的不是黄花。小精灵问“乐乐藏的什么花?”

  师:你看图真仔细,说的也很完整!下面请大家和自己组内的小伙伴说一说乐乐藏什么花。为什么呢?

  《数学广角》教案 10

  一、教学内容

  简单的排列组合

  二、教学目标

  1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

  2.培养学生有序地、全面地思考问题的意识和习惯。

  三、编排特点

  1.借助操作活动或学生易于理解的事例来帮助学生找出排列数或组合数。

  2.利用学生已有的知识让学生逐步建构新的知识。

  衣服搭配、摆几位数、求比赛场次等例子在二年级上册都出现过。

  3.利用直观图示帮助学生有序地、不重不漏地找出排列数或组合数。

  四、具体编排

  1.例1(简单的组合)

  (1)隐含了分步计数的原理,但这儿不要求用分步计数的方法(乘法)来求组合数。只要能用图示的方法来求出组合数就可以了。

  (2)教材上提供了两种图示表示法,引导学生用画简图的方式来表示抽象的数学知识。实际上还有其他的方法,例如每条裙子或裤子分别可以搭配两件上衣(分步时,可以把确定上衣作为第一步,也可以把确定裙子和裤子作为第一步),教学时要充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

  (3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示衣服,圆形表示裙子和裤子,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

  (4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

  2.“做一做”

  通过活动的方式让学生不重不漏地把所有两位数写出来。

  3.例2(简单的排列)

  学生已经有了拿三张数字卡片摆两位数的经验,摆三位数可以用类推的方式让学生自己解决。在这儿的'重点是引导学生有序地思考,怎样摆才能不重不漏。学生一开始可能是无规律地摆,但经过一定的观察后,会逐渐走向有序。要让学生经历一个从无序到有序、从实际摆卡片到脱离卡片直接写出这些三位数的过程。

  4.“做一做”

  借助学生喜爱的西游记的故事情境让学生直观地找出排列数。

  5.例3(简单的组合,两两组合)

  (1)利用20xx年世界杯足球赛的题材,除了教学组合知识以外,还可以适当进行爱国主义教育。

  (2)用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。(原来教材上是有的,但由于版面的原因,送审后删去了。)

  6.练习二十五

  设计丰富的情境让学生练习,巩固排列和组合的知识。

  五、教学要求

  1.要借助于操作活动帮助学生求排列数或组合数。

  排列、组合是很抽象的数学知识,要用操作活动把这些抽象的知识直观化、具体化。

  2.注意把握教学要求。

  在这儿还只是用图示的方式把所有的排列或组合情况罗列出来(即有哪些排列或组合),不是抽象地计算一共有多少种排列数或组合数。要允许学生用自己喜欢的方式去求排列数、组合数。至于排列、组合等名词,排列与组合的区别,分类计数原理、分步计数原理等,都不要求学生掌握。

  实践活动掷一掷

  一、利用的数学知识

  1.组合(两个骰子上的数字之和)

  2.事件的确定性和不确定性、列举所有可能出现的结果(每个骰子上可能的结果是1至6六个数,组成的和可能是2至12的所有数,不可能是1或13等数。)

  3.可能性大小(组成的和是2至12中任一个数,但发生的可能性大小是不同的。)

  二、活动步骤

  (一)示范游戏

  1.体验确定现象与不确定现象,列举所有可能的结果。(运用组合的知识,判断哪些和不可能出现,哪些和可能出现。)

  2.教师提出游戏规则,学生猜想结果。11个可能结果中教师选5个,学生选6个,学生错误地认为赢的可能性比教师大。

  3.开始游戏。学生总是输,产生认知冲突,从而引起进一步探索的欲望。

  (二)小组内游戏,探索结论。

  通过小组内游戏的方式,进行实验,利用统计的方式呈现实验的结果,初步探索教师总能赢的原因。要引导学生在实验的结果中寻找统计学上的规律。

  (三)理论验证

  通过组合的理论来验证实验的结果。可以用不同的方式来进行组合,让学生探讨每个“和”所包含的组合情况的多少与这个“和”出现的次数之间的关系。

  《数学广角》教案 11

  教学目的:

  1、初步建立“倍”的概念,理解“几倍”与“几个几”的联系。

  2、培养学生观察、推理、迁移的能力及语言表达能力。

  3、培养学生善于动脑的良好学习习惯和对数学的学习兴趣,培养他们创新的意识。

  4、对学生进行爱护花草树木的教育

  教学重难点:

  教学重点:进一步感知除法的意义,感悟乘、除法之间的内在联系。

  教学难点:会用乘法算式求商的方法。

  教具准备:

  圆片、小棒、多媒体课件。

  教学过程:

  一、设计问题情境,引入新课

  出示:2只白羊和6只小兔

  教师:我们学习过比较两个量多少的知识,谁能根据这幅图说一句话?(小兔比白羊多4只;白羊比小兔少4只。)

  教师:同学们说得很好,我也说一句,小兔的只数是白羊的3倍。他们知道这句话是什么意思吗?

  (在学生感到迷惘时,揭示今天的学习内容。板书:倍的概念。)

  二、探究新知

  1、教学例1

  (1)动手操作。(指名学生上台摆。)

  第一行摆:

  第二行摆:2个3根(教师只说2个3根,让学生思考2个3应怎样摆。)

  (2)教师揭示倍的含义,指着学生摆的两行小棒小结:第一行摆了3根小棒为一份,第二行摆了2个3根是2份,我们就说,6里面有2个3,6是3的2倍。

  (3)教师在第二行添上3根小棒,问:第二行里有几个3根?第二行的小棒数是第一行的几倍呢?

  让同桌学生两个互相说一说,然后指名说。再添上3根呢?

  (4)摆一摆,说一说。8是4的几倍?8是1的几倍?

  2、教学例2。

  (1)教师摆。

  第一行摆:2片枫叶

  第二行摆:4片叶子

  问:第二排是第一排的几倍?你是怎样知道的?怎样挪动第二排的树叶就可以一眼看出两排树叶之间的关系?摆一摆。你发现了什么?(把4片叶子每2片分一份,可以分两份)用除法怎样表示?

  板书:第二行的个数是第一行的xxx倍。

  4÷2=

  教师提问:你能将空填完整吗?第二行要怎样摆,才能清楚地看出是第一行的2倍呢?

  (2)教师摆第三排叶子

  问:第三排是第二排的几倍?你是怎样知道的?怎样挪动第三排的树叶就可以一眼看出两排树叶之间的'关系?摆一摆。你发现了什么?(把12片叶子每4片分一份,可以分三份)用除法怎样表示?

  板书:第三行的个数是第二行的xxx倍。

  12÷4=

  3、新课小结:这节课你都知道了什么?一个数里面有几个另一个数,我们就说这个数是另一个数的几倍。

  4、课堂活动

  (1)学生自己画示意图,并完成填空。

  (2)让学生说说,为什么红花的朵数是黄花的5倍呢?

  三、巩固练习

  1、课堂活动2题。

  摆一摆,说一说。

  2、口答

  12里面有()个6,12是6的()倍。

  42里面有()个7,42是7的()倍。

  25里面有()个5,25是5的()倍。

  18里面有()个3,18是3的()倍。

  21里面有()个3,21是3的()倍。

  30里面有()个5,30是5的()倍。

  《数学广角》教案 12

  教学目标:

  1、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

  2、使学生在解决实际问题的过程中体会等量代换的思想。

  教学准备:

  小动物图片、“嘉年华”游乐园代币

  教学过程:

  一、借助熟悉题材,渗透集合思想。

  1、巧妙设疑,直观感悟。

  (1)谈话:老师知道同学们有很多的兴趣爱好,有的喜欢音乐,有的喜欢美术,有的两样都喜欢,老师想进一步了解你们,请允许我对其中的一个小组进行调查,好吗?

  (2)(指定小组)分别在“音乐”和“美术”下面签上名字,两者都喜欢,两边都签。

  (3)全班一起统计喜欢音乐和喜欢美术的人数。

  (4)(故作惊讶):咦,这个小组没有这么多人呀?问题出在哪儿呢?

  (5)四人小组讨论发现:统计过程中有学生既喜欢音乐又喜欢美术,是重复的,在计算总人数时只能计算一次。

  2、图示方法,加深理解。

  (1)(出示)先是两个小组的集合圈,再把两个圈进行合并。

  (2)让学生说一说图中不同位置所表示的不同意义。

  (3)让学生列式求出喜欢音乐和喜欢美术的'共有多少人。

  (4)全班交流,说说想法。

  (5)师根据课堂实际情况适当小结。

  3、运用集合思想解决问题。

  (1) 情境出示课本P110第2题。

  (2) 学生独立思考并解决。

  (3) 同桌交流,重点说说想法。

  (4) 反馈。(昨天和今天进货的重复部份用重点号显示)

  二、灵活运用数学思想方法解决问题

  1、谈话:小动物在讨论在陆地上生活还是在水里生活好。一共来了10种动物,有6种动物可以在陆地上生活的,有6种动物可以在水里生活。这里面有几种动物既可以在陆地上生活也可以在水里生活?

  (适当给学生介绍“两栖动物”的常识,扩展学生知识面。)

  2、(情境出示)谈话:小动物们要来个交换大行动,它们规定: 6根胡萝卜换2个大萝卜,9个大萝卜换3棵大白菜。6棵大白菜换多少根胡萝卜?

  3、谈话:动物们交换得正热闹,几个图形也来了,它们分别是“○、△、□”。你能求出○、△、□所代表的数吗?

  (1) △+□=240 (2)○+□=91

  △=□+□+□ △+□=63

  △=? △+○=46

  □=? ○=?△=?□=?

  四、小结。

  1、谈谈这节课的收获。

  2、小调查:生活中哪些地方要用到今天所学知识来解决。

  《数学广角》教案 13

  教学目标

  一、基础性目标:

  1、通过生活中的事例,使学生初步体会数字编码思想在解决实际问题中的应用。

  2、让学生通过观察、比较、猜测来探索数字编码的简单方法,学会用数进行编码,初步培养抽象、概括能力。

  二、发展性目标:

  1、让学生进一步体会数在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养应用意识和实践能力。

  2、使学生在数学活动中养成与人合作的良好习惯,初步学会表达和交流解决问题的过程和结果。

  教学重点:

  1、了解邮政编码的结构,初步体会数字编码的方法。

  2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。

  3、掌握利用符号和数字组合编码的方法。

  教学难点:

  1、了解邮政编码的结构,初步体会数字编码的方法。

  2、了解身份证号码中蕴含的简单信息,加深对编码方法的理解。

  3、掌握利用符号和数字组合编码的方法。

  教材分析:

  1、“数学广角”主要是向学生渗透一些重要的数学思想方法。本单元是通过日常生活中的一些事例,使学生初步体会数字编码思想在解决实际问题中的应用,并通过观察、比较、猜测来探索数字编码的简单方法,让学生学会运用数进行编码,初步培养学生的'抽象、概括能力。

  2、在日常生活中,数有着非常广泛的应用。让学生明确,数不仅可以用来表示数量和顺序,还可以用来编码,并通过实践活动进行简单的数字编码,培养学生的数学思维能力。

  3、数字编码和我们的生活紧密相关,让学生通过生活中的具体事例,比如邮政编码、身份证号码、电话号码等,体会到运用数字或者符号来描述事物,可以比较简洁、准确地表示出事物蕴含的客观规律,也便于我们分类查询和统计。

  4、通过一些生活中的事例向学生渗透数字编码思想,通过观察、比较、猜测来探索数字编码的简单方法,并通过实践活动加以应用。让学生体会到数学应用的广泛性,从而提高他们学习数学的兴趣和积极性。

  教学建议:

  1、恰当把握目标。

  数字编码是一种抽象的数学思想方法,在这里学生只要能从邮政编码、身份证号码等具体实例中初步了解蕴含其中的一些简单信息和编码的含义,探索出数字编码的简单方法,并能在实践活动中加以应用就可以了,不要求学生掌握编码中每个数字的信息和含义。

  2、注意数学与生活的联系,适度关注学生的生活经验。

  教学中,教师要尽量从学生身边的具体事例来引入教学。同时,启发学生了解生活中的数学,比如通过调查了解邮政编码和身份证号码的含义,了解生活中的一些数字编码的意义等。

  3、让学生动手实践,提供自主探索的空间。

  学生在实践中可以有不同的编码方法,教师要允许学生采用不同的形式,并且要放手让学生亲身去体会、经历运用所学知识解决实际问题的过程,培养学生的探索精神和实践能力。教师只是在必要时给以一定的点拨、引导。

  《数学广角》教案 14

  一、教学目标

  学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

  培养学生初步的观察、分析及推理能力,以及有顺序地、全面地思考问题的意识。

  使学生感受数学在现实生活中的广泛应用,尝试用数学的方法来解决实际生活中的问题。

  二、教学重难点

  重点:经历探索简单事物排列与组合规律的过程。

  难点:理解简单事物排列与组合的不同。

  三、教学方法

  讲授法、讨论法、实验法

  四、教学过程

  导入(3 分钟)

  (1)同学们,今天我们来做一个游戏,名字叫 “石头、剪刀、布”。你们会玩吗?

  (2)请两位同学上台玩游戏,其他同学观察并思考:他们的出拳方式有几种?

  (3)引出课题:在生活中,我们经常会遇到这样的'搭配问题,这节课我们就来研究搭配中的学问。

  新授(20 分钟)

  (1)创设情境:六一儿童节快到了,小红要去参加文艺汇演,她想选一件漂亮的上衣和一条裙子,可是她不知道该怎么搭配,大家能帮帮她吗?

  (2)学生观察并思考:上衣和裙子的搭配方式有几种?

  (3)学生小组合作,动手摆一摆,记录搭配方法。

  (4)汇报展示:请不同方法的小组上台展示,并说一说自己的想法。

  (5)比较方法:哪种方法更简单、更不容易重复和遗漏?

  (6)总结:在搭配时,我们要按照一定的顺序,有规律地进行搭配,这样才能不重复、不遗漏。

  巩固练习(10 分钟)

  (1)完成教材上的 “做一做”,学生独立完成,集体订正。

  (2)完成练习二十二的第 1、2 题,学生先独立思考,再小组交流。

  课堂总结(5 分钟)

  (1)这节课我们学习了什么?你有什么收获?

  (2)在生活中,我们要学会有顺序地、全面地思考问题,这样才能更好地解决问题。

  布置作业(2 分钟)

  (1)完成练习二十二的第 3 题。

  (2)回家后,和爸爸妈妈一起玩搭配游戏。

  《数学广角》教案 15

  一、教学目标

  学生通过观察、猜测等活动,经历简单的推理过程,理解逻辑推理的含义。

  学生能借助连线、列表等方式整理信息,并按一定的方法进行推理。

  培养学生初步的观察、分析、推理和有条理地进行数学表达的能力。

  二、教学重难点

  重点:理解逻辑推理的含义,经历简单的推理过程。

  难点:按一定的方法进行推理。

  三、教学方法

  讲授法、讨论法、实验法

  四、教学过程

  导入(3 分钟)

  (1)同学们,你们喜欢玩游戏吗?今天我们来玩一个猜一猜的游戏。

  (2)老师手里拿着一个黑色的袋子,里面装着一些球,有红色和蓝色两种颜色。我请两位同学上台来摸一摸,然后猜一猜袋子里的.球是什么颜色的。

  (3)引出课题:在游戏中,我们需要根据已知信息进行推理,才能得出正确的结论。这节课我们就来学习简单的推理。

  新授(20 分钟)

  (1)创设情境:有语文、数学和品德与生活三本书,小红、小丽和小刚各拿一本。小红说:“我拿的是语文书。” 小丽说:“我拿的不是数学书。” 那么小刚拿的是什么书?

  (2)学生独立思考,尝试推理。

  (3)小组交流,互相说一说自己的推理过程。

  (4)汇报展示:请不同方法的小组上台展示,并说一说自己的想法。

  (5)总结方法:在推理时,我们可以先根据已知信息确定一部分,再根据其他信息进行排除,最后得出结论。

  巩固练习(10 分钟)

  (1)完成教材上的 “做一做”,学生独立完成,集体订正。

  (2)完成练习二十二的第 4 题,学生先独立思考,再小组交流。

  课堂总结(5 分钟)

  (1)这节课我们学习了什么?你有什么收获?

  (2)在推理时,我们要仔细观察,认真分析,有序地思考,才能得出正确的结论。

  布置作业(2 分钟)

  (1)完成练习二十二的第 5 题。

  (2)回家后,和爸爸妈妈一起玩推理游戏。

  《数学广角》教案 16

  一、教学目标

  学生通过观察、操作、交流等活动,理解等量代换的含义,初步体会等量代换的思想方法。

  学生能在具体情境中,运用等量代换的方法解决简单的实际问题。

  培养学生的观察能力、逻辑推理能力和语言表达能力。

  二、教学重难点

  重点:理解等量代换的含义,掌握等量代换的方法。

  难点:运用等量代换的方法解决实际问题。

  三、教学方法

  讲授法、讨论法、实验法

  四、教学过程

  导入(3 分钟)

  (1)同学们,你们听过 “曹冲称象” 的故事吗?谁能给大家讲一讲这个故事?

  (2)曹冲是怎样称出大象的重量的呢?

  (3)引出课题:在这个故事中,曹冲运用了一种重要的数学思想方法 —— 等量代换。这节课我们就来学习等量代换。

  新授(20 分钟)

  (1)创设情境:1 个西瓜的重量等于 3 个菠萝的重量,1 个菠萝的重量等于 2 个苹果的重量,那么 1 个西瓜的重量等于几个苹果的重量?

  (2)学生观察情境,思考问题。

  (3)学生动手操作,用学具代替水果,进行等量代换。

  (4)汇报展示:请不同方法的小组上台展示,并说一说自己的想法。

  (5)总结方法:在进行等量代换时,我们要找到中间量,将其进行等量代换,最终得出结果。

  巩固练习(10 分钟)

  (1)完成教材上的. “做一做”,学生独立完成,集体订正。

  (2)完成练习二十二的第 6 题,学生先独立思考,再小组交流。

  课堂总结(5 分钟)

  (1)这节课我们学习了什么?你有什么收获?

  (2)在解决实际问题时,我们可以运用等量代换的方法,将复杂的问题转化为简单的问题,从而轻松解决。

  布置作业(2 分钟)

  (1)完成练习二十二的第 7 题。

  (2)回家后,找一找生活中还有哪些等量代换的例子。

  《数学广角》教案 17

  一、教学内容

  简单的排列组合

  二、教学目标

  使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

  培养学生有序地、全面地思考问题的意识和习惯。

  三、教学过程

  激趣导入

  通过提问:“谁能用1、2、3组成多少个不同的两位数?”引出排列组合的主题。

  动手操作,发现规律

  让学生自己动手用数字卡片摆一摆,找出所有可能的组合。引导学生动脑,找规律去摆,比一比谁摆的数多而不重复。

  小组合作,汇报交流

  小组合作摆卡片,汇报结果,师生总结。

  抽奖游戏,巩固知识

  通过抽奖游戏,让学生进一步理解组合的`概念。

  课堂小结

  总结今天学到的排列组合知识,强调有序思考的重要性。

  四、作业安排

  让学生排列123、456等数字组合,并写出所有可能的排列。

  《数学广角》教案 18

  一、教学内容

  烙饼问题

  二、教学目标

  使学生通过生活中的实例初步体会统筹思想,理解合理安排的方法。

  培养学生经历合作、自主、探究的过程,认识到解决问题的多样性,形成解决问题最优方案的意识。

  三、教学过程

  课前交流,营造气氛

  通过谈论母爱,激发学生的学习兴趣。

  情景导入,探索新知

  通过小红的妈妈烙饼的情境,引出烙饼问题。让学生观察图片,了解烙饼的要求,并思考如何烙饼最节省时间。

  合作交流,探究方法

  让学生用圆片代替饼演示烙饼过程,计算用了多少分钟,并比较不同烙饼方法的优劣。得出结论:9分钟是烙3张饼最短的`时间,称为快速烙饼法。

  拓展延伸

  让学生思考烙4张、5张、6张……饼所需的最短时间,并记录下来。

  课堂小结

  总结烙饼问题中体现出的统筹思想和合理安排的方法。

  四、作业安排

  让学生回家后尝试用快速烙饼法烙饼,并记录所需时间。

  《数学广角》教案 19

  一、教学内容

  集合

  二、教学目标

  使学生在具体的情境中感受集合的思想,感知集合图的产生过程。

  能借助直观图理解题意,同时使学生在解决问题的过程中进一步体会集合的思想,进而形成策略。

  三、教学过程

  情境导入

  通过提问:“如果我们班有30名同学,其中有15名同学喜欢数学,10名同学喜欢语文,那么既喜欢数学又喜欢语文的同学最多有多少名?”引出集合的主题。

  自主探索

  让学生用图形表示喜欢数学、喜欢语文和既喜欢数学又喜欢语文的同学的数量关系。引导学生理解集合的概念和集合图的表示方法。

  合作交流

  小组合作,让学生互相交流自己的图形表示方法,并讨论如何根据图形解决问题。

  学以致用

  让学生用集合的思想方法解决一些简单的实际问题,如:班级中参加体育活动的`同学有20名,参加文艺活动的同学有15名,其中有5名同学既参加了体育活动又参加了文艺活动,问班级中参加活动的同学共有多少名?

  课堂小结

  总结今天学到的集合知识和集合图的表示方法,强调集合思想在解决实际问题中的应用。

  四、作业安排

  让学生用集合的思想方法解决一些实际问题,并记录下来。

鲁公网安备 37162302000347号